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S U M M A R Y  

LL 

A theoretical investigation of the hypervelocity impact 

of pellets with thin plates has been performed. 

Some of the experimental work on the determination of 

shocked states has been reviewed and incorporated into a purely 

one-dimensional model of the impact phenomena. Based on this 

model, a computer program was developed using a finite difference 

technique based on the method of characteristics in order to 

calculate the one-dimensional system of interacting waves. An 

arbitrary equation of state could be used. 

Using this program, various equations of state were 

examined as to their relative merits in describing the dynamics 

of the expansion process, Especially the ideal gas approximation. 

was critically examined and found to be applicable at high impact 

velocities. 

impact velocity and bumper material analyzed. 

of unlike materials, the importance of the reflections from the 

contact front are considered. 

Upstream flow was calculated and its dependence on 

For the impact 

In addition some of the experimental techniques used in 

hypervelocity impact are analyzed as to their direct application 

to the verification of the foregoing theoretical 



ACKNOWLEDGEMENTS 

The au tho r  wishes t o  expres s  h i s  g r a t i t u d e  t o  P ro fes so r  

G.V. Bul l  f o r  i n i t i a t i n g  t h i s  problem and f o r  h i s  continued 

encouragement, The advice and c o n s t r u c t i v e  c r i t i c i s m s  of 

Mr. J. H. S. Lee were apprec i a t ed .  

This work w a s  supported by NASA under Contract  No. NAS 3-4190. 



. 

. 

SUMMARY 

iii 

TABLE OF CONTENTS 

Page 

i 

ACKNOWLEDGEMENTS ii 

TABLE OF CONTENTS iii - iv 
LIST OF SYMBOLS v - vi 

1. GENERAL CONSIDERATIONS OF THE HYPERVELOCITY 
PROBLEM 1 

1 .1  Introduction 1 

1 .2  The Experimental Determination of 
Properties Behind Shocks in Solid 3 

(A) Some Basic Properties of the Shock 
Transition 3 

(B) Experimental Determination of the 
Hugoniot Curve 6 

(C) Isentropic Compressibility Behind 
a Shock 10 

1.3 The Equation of State 11 

(A) Condensed States 12 

(B) Expanded States 15 

1.4 General Equations of Motion 17 

2. THE IMPACT OF PELLETS WITH THIN BUMPER 
PLATES 20 

2.1 Introduction 20 

2.2 Geometry of the  One-Dimensional 
Formulation 24 

2.3 Shock System 25 

2.4 Interaction Times and Distances 27 

2.5 The Interaction Region 33 



i. v 

2 . 6  Boundaries of the  I n t e r a c t i o n  Region 

2 . 7  I n t e r a c t i o n  w i t h  a Contact Sur face  

, Zaalculation of t h e  I s e n t r o p e s  & Severa l  
Approximations 

3 .  RESULTS AM) DISCUSSIONS 

3 . 1  I n i t i a l  S t a t e s  

3 . 2  I n t e r a c t i o n  Poin ts  

3 . 3  The I n t e r a c t i o n  Region 

3 . 3  1 Accuracy of t h e  Numerical Technique 

3 3 . 2  Effec t  on Equat ion of S t a t e  on 
Expansion 

3 3 . 3  Surface of Zero Ve loc i ty  

3 . 3 . 4  Ref1ecti.on.s f rom t h e  Contact  Po in t  

4 COi >IS 

5 .  RECOMMENDATIONS FOR EXPERIMENTAL WORK 

APPENDIX A 

APPENDIX B 

LIST OF REFERENCES 

TARLE I 

TABLE I1 

TARLE I11 

38 

4 1  

4 4  

5 1  

5 1  

62 

64  

64 

65 

7 1  

7 3  

75 

7 6  

77 

81 

8 2  

85 

85 

86 



- v -  

LIST OF SYMBOLS 

L 

--L - v e l o c i t y  v e c t o r  
2 v - divergence 

U - one-dimensional p a r t i c l e  v e l o c i t y  

c - v e l o c i t y  of sound 

0 - d e n s i t y  

- pres su re  

T - a b s o l u t e  temperature  

E - s p e c i f i c  i n t e r n a l  energy 

S - s p e c i f i c  entropy 

cv- s p e c i f i c  h e a t  a t  c o n s t a n t  volume 

- r a t i o  of s p e c i f i c  h e a t s  

0 -  shock v e l o c i t y  

- i s e n t r o p i c  c o m p r e s s i b i l i t y  

L -  p e l l e t  l eng th  

6 - bumper th i ckness  

c- p e l l e t  r a d i u s  

V -  impact v e l o c i t y  

- p e l l e t  shock 

S6 - bumper shock 

C - con tac t  f r o n t  

Rr - p e l l e t  r a r e f a c t i o n  

R, - bumper r a r e f a c t i o n  

S P  
2 

2 

2 

),, A/?. - c h a r a c t e r i s t i c  d i r e c t i o n s  

A b  - pressure i n t e r v a l  

2('fl 6 - cons tan t s  i n  Murnaghan's equa t ion  
hj w m  



- vi - 

L 

&',d , R,d- constants in the polytropic equation 

- constants occurring in Tillotson's 

- cold compression curve (zero degree 
isotherm) 

- cold compression energy 

- Gruneisen's constant 

- electronic specific heat 

Subscripts 

- bumper material 

- pellet material 

- contact front 

- initial unshocked state 

characteristics 

characteristics 

- 

- 

- reflected characteristics 
from contact front 



1 

1. GENERAL CONSIDERATIONS OF THE HYPERVELOCITY IMPACT PROBLEM 

1.1 Introduction 

A projectile travelling at hypervelocity (V > 5  kmlsec) 

possesses large amounts of energy and momentum due t o  its 

motion. A typical value of kinetic energy would be 12 

kilocal/gm. corresponding to a velocity of 10 km.sec. 

This may be compared to a typical explosive such as TNT 

which has an energy release of about 1.5 kilocal/gm. 

When this projectile impacts on a target surface, this 

energy is explosively distributed over a very small area. 

Strong shock waves are formed compressing projectile and 

target material and generating extremely high pressures 

typically measured in megabars. * 

The pressure of the shocked material generally is very 

much larger than the material strength, typically measured 

in kilobars.** This leads to the important simplification 

that the behaviour of the shocked material can be described 

by an inviscid, compressible fluid. This is one of the 

basic assumptions of many theories of hypervelocity impact 

and its limitations along with other approximations will be 

discussed in the subsequent sections. 

* The shocks generated on impact of an aluminum projectile with 
an aluminum target at 10 kmlsec compress material to 1.7 times 
its original density and raise pressure to 1.65 megabars. 

** e.g., the tensile strength of aluminum at standard conditions 
is 1.i kilobars. 
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The high thermodynamic states generated on impact 

cannot exist long since the surroundings are generally 

at much lower conditions. 

being very great (megabars -+ zero for meteor impact) 

the resulting expansion is extremely rapid, typically 

time is measured in microseconds and the whole impact 

phenomena is essentially complete within milliseconds.* 

The pressure differential 

The above discussion should give one a feel for some 

of the numbers involved and also indicate the difficulties 

that will be encountered in the analysis of the hyper- 

velocity impact problem, both by analytical or experimental 

methods . 

* This would depend on course of the scale of the impact, the 
case considered here is a projectile with dimensions of the 
order of a cm. 
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1 . 2  The Experimental Determination of t he  P r o p e r t i e s  
Sehind Shocks i n  S o l i d s  

(A) Some Basic P r o p e r t i e s  of t h e  Shock T r a n s i t i o n  

The cond i t ions  a c r o s s  a normal shock can be de r ived  

wi th  g r e a t  g e n e r a l i t y  and are s u b j e c t  t o  r e l a t i v e l y  few 

r e s t r i c t i o n s .  The assumptions made are:  

(a)  a s teady s t a t e  i s  e v e n t u a l l y  reached some 
d i s t a n c e  behind t h e  shock f r o n t  

(b) t h e  material under p re s su re  behaves as a 
f l u i d  

(c )  r a d i a t i o n  l o s s e s  may be neg lec t ed  

The d e r i v a t i o n  can be made i n  any Ga l i l ean  r e f e r e n c e  system 

b u t  f o r  s i m p l i c i t y  and c l a r i t y  the  fo l lowing  system i s  

chosen: 

> 
where S i s  a normal shock moving i n t o  a medium a t  r e s t  

w i th  v e l o c i t y a  . The p a r t i c l e  v e l o c i t y  behind t h e  

shock wi th  r e spec t  t o  t h e  unshocked material ( s u b s c r i p t  0) 

i s  U, . 

Now, i f  condi t ions ( a ) ,  (b) and ( c )  are  assumed then 

an a p p l i c a t i o n  of t he  conse rva t ion  cond i t ions  a c r o s s  t h e  

shock g i v e s :  

Conservation of Mass 

1 . 2 . 1  
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Conservation of Momentum 

Cmservaticn of Energy 

1.2.2 

1.2.3 

Combining equations 1.2.1 and 1.2.2, eliminating u, 

gives : 

1.2.4 

For the pressure jump from equation 1.2.2, we have 

1.2.5 

The above two equations 1.2.4 and 1.2.5 were derived 

using the mechanical conservation conditions only (mass 

and momentum). 

1.2.3, the following equation may be derived: 

Using the energy relation equation 

1.2.6 
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This important relation is known as the Rankine- 

Hugoniot condition across a shock, Its importance lies 

in the fact that if an equation of state of the form 

E = E ( 

a unique curve in the p -? plane for each initial 

condition ( Po '/e. ). 

p ) is specified then equation 1.2.6 describes 

There are however, certain restrictions on the form of 

E (fib ) known as the Bethe-Weyl conditions(Ref. 9 )  and 

can be stated as follows: 

For stable compressive shocks to exist the equation of 

state has to satisfy the following inequalities: 

1.2.7 

These are satisfied for nearly all materials* that we 

are concerned with and thus need not be dwelled upon. 

* An important exception to this is phase changes where dis- 
continuities in Hugoniot curves occur violating conditions 
1.2.7 
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For equations of state satisfying the above 

conditions, the Hugoniot curve takes on the following 

general shape. 

Hugoniot Curve 
for a typical 
ma t er ia 1 

Where point A (k 'he 
( b ,  I/r 
important fact is that the slope of line A-B is direct 

) is the initial state and B 

) is the condition behind the shock. One 

Y 

related to the speed of the shock through equation 1.2.4 
-I 

(B) Experimental Determination of the Hugoniot Curve 

Of the relations derived in the previous section, two 

assume special importance in the experimental determin- 

ation of shock Hugoniots. They are equations 1.2.1 and 

1.2.5 which may be re-written as: 

1.2.8 

1.2.9 
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. 

. 

Assuming the initial states to be known, the density 

and the pressure , can be determined from an 

experimental observation of the shock velocity,W , and 

the particle velocity behind that shock,LL . 
way a point is located on the Hugoniot curve which passes 

through the initial conditions ( be 1 

In this 

). 

In general velocity measurements can be made quite 

accurately and a number of experimental techniques have 

been developed in the last 15 years (see Refs. 1, 2 ,  3 ,  

4 ,  5 & 6 ) .  

In order to satisfy assumption (a) and (b) of the 

section (A) ,  sufficiently strong shocks have to be 

generated so that (a) the shock thickness does not 

approach the physical dimensions of the experiment, and 

(b) the shocked pressure is sufficiently above the yield 

strength of the material so that the material behaves as 

a fluid. 

To produce shocks of this strength requires the 

practically instantaneous generation ?f very high 

pressures (at least 10 - 100 kilobars) which have to be 

held constant over a period of time (approx. lp sec) 
in order for shock to be of constant strength. 

Two basically different techniques have been 

developed in order to fulfill the above requirements. 
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The Di rec t  Contact Method 

I n  t h i s  method an  exp los ive  l e n s  (producing a plane 

de tona t ion  wave) i s  placed i n  d i r e c t  c o n t a c t  w i th  t h e  

sample. The i n t e r a c t i o n  of t h e  de tona t ion  wi th  t h e  

s u r f a c e  of the sample produces t h e  necessa ry  p r e s s u r e  

f o r  a s h o r t  period of t i m e .  The p r e s s u r e  produced i s  

g e n e r a l l y  not p e r f e c t l y  c o n s t a n t ,  as i s  r e q u i r e d ,  b u t  

t he  shock a t t e n u a t i o n  due t o  t h i s  i s  g e n e r a l l y  s m a l l  

(see Ref. 4 ) .  

The measurements made a r e  the  shock v e l o c i t y  and t h e  

f r e e - s u r f a c e  v e l o c i t y  of t h e  t a r g e t  material as the 

shock emerges from t h e  end of t h e  sample. I t  has  been 

shown (Refs. 1 and 4 )  t h a t  t h i s  v e l o c i t y  i s  n e a r l y  

twice t h e  p a r t i c l e  v e l o c i t y  behind the  shock f o r  most 

m a t e r i a l s  with ve ry  l i t t l e  d e v i a t i o n ( a t  least  f o r  

shocks generated w i t h i n  the  experimental  regime of t h i s  

method. ) 

Shock p res su res  a r e  l i m i t e d  i n  t h i s  method t o  t h e  

range 50 - 500 k i l o b a r s .  The lower l i m i t  a r i s e s  due t o  

f a i l u r e  of explosive t o  de tona te .  For p r e s s u r e  below 

and above t h i s  r eg ion  a s u b s t a n t i a l l y  d i f f e r e n t  technique 

i s  used. 
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The F ly ing  P l a t e  Method 

I n  t h i s  method a p l a t e  i s  exp los ive ly  a c c e l e r a t e d  

and impacts on a t a r g e t .  Various methods of 

a c c e l e r a t i o n  a r e  used bu t  f o r  shock Hugoniot s t u d i e s  a n  

exp los ive - l ens  system i s  g e n e r a l l y  used t o  o b t a i n  

maximum impact v e l o c i t i e s  (up t o  14 kmlsec, Ref .6)  

u s i n g  r e l a t i v e l y  s h o r t  runs  ( s e v e r a l  cms). 

The p a r t i c l e  v e l o c i t y ,  i n  t h i s  c a s e ,  can be d i r e c t l y  

deduced from the v e l o c i t y  of t h e  f r ee - runn ing  p l a t e .  

I f  p r o j e c t i l e  and t a r g e t  a r e  of t h e  same m a t e r i a l  then t h e  

p a r t i c l e  v e l o c i t y  i s  e x a c t l y  h a l f  t h e  impact v e l o c i t y  (see 

s e c t i o n  2 . 4 )  For t h e  impact of d i f f e r e n t  materials t h e  

p a r t i c l e  v e l o c i t i e s  can be ob ta ined  through t h e  

impedance matching of bumper wi th  p r o j e c t i l e  m a t e r i a l  

provided the Hugoniot curve of one of t h e s e  i s  known. 

Using t h i s  method p r e s s u r e s  as high as 9 megabars 

have been r epor t ed  (Ref. 6). The l i m i t i n g  f a c t o r  i n  t h i s  

method seems to  be t h e  energy r e l e a s e  p o s s i b l e  i n  a 

s i n g l e  explosive s t a g e  and p o s s i b l y  m u l t i p l e  s t a g i n g  o r  

even a l o w  y i e ld  nuc lea r  dev ice  have been suggested (Ref. 

8)  t o  b r i n g  p res su res  up t o  the  u l t i m a t e  u s i n g  t h i s  

technique (several  hundred megabars). The l i m i t  be ing  

t h e  maximum a c c e l e r a t i o n  a p l a t e  w i l l  take without  

b reak ing  up o r  be ing  hea ted  t o  i t s  m e l t i n g  p o i n t  by the  

exp los ive  substance.  
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(C) Isentropic Compressibility Behind a Shock 

At some time following the initial formation of the 

impact shocks, the shocked material will be expanded. 

It is therefore necessary to determine the compressibility 

of the material in the shocked state. 

. 

This is done by determining the speed of sound in 

the shocked medium through shock attenuation experiments 

(Ref. 7 ) ,  the speed of sound being related to the 

isentropic compressibility by: 

1.2.10 

The actual experimental technique is much the same 

as in the flying plate method except that the projectile 

release wave* is allowed to overtake and attenuate the 

target shock, by using a relatively thick bumper. 

Knowledge of the shock decay curve enables one to 

pin-point where the projectile rarefaction first over- 

takes the bumper shock. If the shock Hugoniot for the 

material is known fram previous experiments, the speed 

of sound in the shocked material can then be determined. 

formed when projectile shock reaches free surface 
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The values  f o r  t he  i s e n t r o p i c  c o m p r e s s i b i l i t y  

determined i n  t h i s  manner a g r e e  ve ry  c l o s e l y  wi th  those 

c a l c u l a t e d  from the  v a r i o u s  equa t ions  of s t a t e  (see 

s e c t i o n  1 . 3  and Refs.  7 and l l ) ,  thus p rov id ing  an  

important  check on t h e i r  v a l i d i t y .  

1 . 3  The Equation of S t a t e  

I n  dea l ing  wi th  condensed media such as shocked s o l i d  

m a t e r i a l s ,  the u s u a l  approximate r e l a t i o n s  developed f o r  

gases  do not  apply and new equa t ions  based on s o l i d  s t a t e  

t h e o r i e s  have t o  be developed. 

A d i f f i c u l t y  a r i s e s  h e r e  due t o  the  f a c t  t h a t  w e  a re  

g e n e r a l l y  i n t e r e s t e d  i n  the  complete expansion from 

megabars t o  a vacuum. For h i g h l y  shocked m a t e r i a l s  t h e  

expansion i n t o  vacuum i s  ve ry  much l i k e  a gas ( i . e .  d e n s i t y  

-7 ze ro  as p res su re  -7zero). For not  s o  s t r o n g l y  

shocked m a t e r i a l s  t he  d e n s i t y  does not  go t o  ze ro  as t h e  

p r e s s u r e  decreases t o  ze ro ,  s i n c e  t h e  shocks do no t  have 

s u f f i c i e n t  energy t o  vapourize the  m a t e r i a l .  Unfo r tuna te ly  

t h e  l a t t e r  case i s  t r u e  f o r  most of t he  experimental  range 

a v a i l a b l e  and on ly  a t  impact v e l o c i t i e s  approaching 15 km/ 

s e c .  do most metals s t a r t  t o  behave l i k e  gases i n  t h e  

expansion phase of t h e  impact phenomena. 

Many non-metals,  however, do vapourize be fo re  t h i s  

(e .g .  camphor) b u t  they are n o t  as w e l l  known thermo- 

dynamically as metals and a g r e a t  dea l  of u n c e r t a i n t y  

e x i s t s  about even t h e  h e a t  of vapour i za t ion  ( e s p e c i a l l y  

p l a s t i c s  1, 
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(A) Condensed States 

In the high density shocked phase of the expansion 

( ( /c07 I ) most materials behave similarly regardless 

of the impact velocity and the equations developed in 

solid state physics for ultra-high pressures are 

expected to apply. One of the best known of these is 

the Mie-Gruneisen equation of state. It has been used 

with reasonable success by Walsh et al. (Refs. 1, 2 ,  3 

and 4 )  in the early Los Alamos work on shocked solid 

states and in a slightly modified form by Al'tshuler et 

al. (Refs. 5,  6 )  in the corresponding Russian work. 

The assumptions upon which the Mie-Gruneisen 

equation is based are:- 

(a ) Only hydrostatic pressure is considered 
(i.e. fluid model). 

(b 1 Sufficiently high temperatures for Cv 
and the Gruneisen constant, , to 
become essentially temperature- 
independent. 

(c ) The lattice dynamics can be represented 
by harmonic oscillators. As the solid 
nears its melting point, this is not 
strictly true and vibrations become 
anharmonic. 

(d 1 Effects of free electrons are neglected. 
This assumption is valid up to temper- 
atures of about 5000°K when electronic 
additions to the specific heat, pressure 
and energy become significant. 

c Under these conditions, the Mie-Gruneisen equation 

may be written in the following form: 

1.3.1 
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where I. ( f ) and E, ( f ) are the pressure and 

internal energy at O°K respectively. 

so called Gruneisen constant, a weak function of 

density. 

r ( r )  is the 

At sufficiently high temperatures* we may write 

1.3.2 

and equation 1.3.1 becomes 

1.3.3 

The dependence of the Gruneisen constant on density 

may be deduced from the following formula due to 

Slater (Ref. 10) : 

1.3.4 

This formula although based on some rather crude 

assumptions does give quite surprisingly good 

results at low pressures and since dependence of 

P on is only slight its use seems to be 

justified. 

* above Debye temperature, which usually is just slightly 
above room temperature. 
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The funct ion pc ( ) can then  e i t h e r  be 

determined from s t a t i c  d a t a  o r  deduced through 

equa t ions  1.3.2,  1 .3 .3  and 1 .3 .4  from t h e  shock 

Hugoniot da t a .  Although t h e s e  two methods do cover 

d i f f e r e n t  ranges of p r e s s u r e  and d e n s i t y ,  Walsh e t  a l .  

(Ref. 4 )  f i nds  t h a t  they j o i n  smoothly and t h e  use  

of t h e  Gruneisen equat ion of s t a t e  i s  j u s t i f i e d  a t  

l e a s t  f o r  a region i n  the  neighbourhood of t h e  shock 

Hugonio t . 

A l ' t s h u l e r  (Ref. 6 )  modified equa t ion  2 t o  a l low 

f o r  t h e  pressure of f r e e  e l e c t i o n s  i n  t h e  m e t a l l i c  

s ta te .  The modified equa t ion  has  t h e  form: 

where . i s  t he  e l e c t r o n i c  s p e c i f i c  h e a t  and a 

f u n c t i o n  of d e n s i t y  on ly  

1.3.6 

This modif icat ion i s  expected t o  g ive  more a c c u r a t e  

r e s u l t s  i n  the high p r e s s u r e  r e g i o n s  and good agreement 

i s  noted by e x t r a p o l a t i n g  t h e i r  r e s u l t s  unto r e s u l t s  

ob ta ined  using t h e  Thomas-Fermi model of t h e  atom which 

on ly  s tar ts  app ly ing  a t  p r e s s u r e s  over 50 megabars 

( the  h ighes t  experimental  p r e s s u r e  being 9 megabars).  
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Most of these equations and others like it 

(see Ref.11) although being the most accurate 

presently available for the calculation of condensed 

states are cumbersome to apply, requiring a great 

amount of numerical work. Tillotson (Ref. 12) has 

developed a semi-empirical equation which is 

relatively simple and convenient to use in numerical 

work. 

where &! = rko and )I- =)7 -1. 

1.3.7 

This equation represents a best-fit extrapolation 

between Thomas-Fermi data at ultra high pressures and 

shock wave data at 1~ - - .  pressuzes. TIII. estimated 

accuracy (from comparison with Walsh's and Al'tshuler's 

data) is 2 5% for shock Hugoniot pressures and 2 8% for 
isentropic expansion pressures. 

(B) Expanded States 

There still remains the problem of the expansion 

of the shocked material at low densities (i.e.qfo<l). 

If material has sufficient energy ( E ) E s )  at these 

lower densities it will behave as a gas and an equation 

different from those developed for condensed states 

has to be used. 
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Where E, is a limiting energy at which gas will start 

to condense and is related to the vaporization energy, 

Tillotson (Ref. 12) here again developed a 

semi-empirical equation of the following form: 

The constants in equations 1.3.7 and 1.3.8 are 

listed in TABLE I11 for some typical materials. For 

very low densities (e& - 1) >>)1 and the equation 

reduces to the ideal gas equation 

2 

1.3.9 

If the internal energy, E, is less than a certain 

minimum E, required for vaporization then the material 

is assumed to partially condense and the condensed 

form equation 1 . 3 . 7  is used. 

The above although not exact gives the approximate 

behaviour of the expansion states with an estimated 

accuracy within ? 7%. 

. 
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1.4 General Equations of Motion 

As mentioned in section 1.1, the hydrostatic 

pressure behind the shocks produced in hypervelocity 

impact is at least several orders of magnitude above 

any rigidity effect of the material. The shocked 

material can thus be treated as a fluid. The validity 

of this assumption has been tested by comparing the 

pressure obtained from dynamic measurements (as in 

section 1.2)with the static pressure measurements made 

by Bridgeman up to 100 kilobars. For aluminum, the 

agreement is found to be entirely satisfactory down to 

about 20 kilobars (Ref. 20). 

In addition, we neglect any effects due to 

viscosity and heat conduction. This assumption depends 

on the physical size of the phenomena. These effects 

are usually confined to small regions where the 

gradients in velocity and temperature are very large. 

These regions can then be represented either by shock 

or shear discontinuities to account for their 

presence. It has been estimated that these effects are 

confined t o  regions of the order of lo-’ cm under most 

conditions (Ref. 4 ) .  

The next assumption is that of thermodynamic 

equilibrium. Again, if these regions of large gradients 

are avoided the fluid can be assumed in equilibrium so 

that any two independent thermodynamic parameters are 
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sufficient to determine the state of the fluid at 

any point. 

Making the usual assumptions of continuity, 

homogeneity, and isotropy we can use a continuum 

model and write the conservation equations in a 

differential form for a compressible, inviscid, non- 

heat-conducting fluid. 

Continuity Equation 

c 
Equation of Motion 

Energy Equation 

Equation of State 

1.4.1 

1.4.2 

1 . 4 . 3  

1.4.4 
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We have i n  a d d i t i o n  neg lec t ed  r a d i a t i v e  h e a t  

t r a n s f e r  which might be a ques t ionab le  assumption 

f o r  u l t r a - h i g h  v e l o c i t y  impacts ( g r e a t e r  than 75 

km/sec) bu t  seems r easonab le  i n  t h e  normal v e l o c i t y  

range (Ref. 2 1 ) .  

One important p rope r ty  of t h e  system of equa t ions  

(1.4.1 - 1.4.4)  i s  t h a t  t hey  can be sca l ed  i n  l e n g t h  

and t i m e  ( i . e .  i f  l e n g t h - s c a l e  i s  changed by a f a c t o r  

K then t ime-scale  i s  a l s o  changed by a f a c t o r  K ) .  

This enables us  t o  c a l c u l a t e  t h e  flow f i e l d  f o r  one 

p a r t i c u l a r  s i z e  and then  s c a l e  r e s u l t s  t o  any s i z e  of 

t h a t  p a r t i c u l a r  geometry. 
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2 .  THE IMPACT OF PELLETS WITH THIN PLATES 

2 . 1  In t roduc t ion  

I n  1946, Whipple (Ref. 19)  suggested t h a t  t h e  

k i n e t i c  energy of a meteor could be used t o  des t roy  

i t  on impact w i th  a t h i n  bumper, o r  s h i e l d ,  spaced a 

d i s t a n c e  away from the  main s k i n  of a space v e h i c l e .  

I n  t h i s  way t he  h i g h l y  shocked meteor and bumper 

material can expand l a t e r a l l y  subsequent t o  the 

o r i g i n a l  impact, d i s t r i b u t i n g  the  p rev ious ly  

concentrated p r o j e c t i l e  energy over a l a r g e  volume. 

Provided the v e h i c l e  s k i n  i s  f a r  enough away from t h e  

s h i e l d ,  the energy and momentum r e a c h i n g  i t  per u n i t  

a r e a  w i l l  not be s u f f i c i e n t  t o  cause s e r i o u s  damage. 

That t h e  general  behaviour of such a scheme i s  

c o r r e c t  has been shown q u a l i t a t i v e l y  by a photographic 

s tudy  i n  a previous r e p o r t  i n  t h i s  series (Ref. 15) .  

A s h o r t  sequence of frames from one of t h e s e  s h o t s  i s  

reproduced h e r e  i n  Fig.  1 and s e r v e s  t o  i l l u s t r a t e  

t h e  main f e a t u r e s  of t he  flow subsequent t o  the  impact 

of a cy l inde r  with a t h i n  p l a t e .  

A t  present  however, t h e  upper l i m i t  of t h e  

experimental ly  ob ta ined  v e l o c i t i e s  ( / d l 1  km/sec) i s  

on ly  t h e  lower l i m i t  of expected meteor v e l o c i t i e s  

(10 - 75 km/sec.) Therefore ,  i n  o r d e r  t o  e x t r a p o l a t e  

t h e  experimental  r e s u l t s  t o  t h e s e  higher  v e l o c i t i e s  

a sound t h e o r e t i c a l  foundat ion i s  needed. 
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Previous analytical approaches in this series 

(Refs. 13 and 14) have used an ideal gas equation 

of state with a specific heat ratio (polytropic 

exponent) of approximately three. This choice was 

due first of all to the inherent simplicity of the 

ideal gas approach and also due to the reasonably good 

agreement obtained with experimentally determined shock 

data. It is one of the purposes of this report to 

critically examine some of the previous assumptions 

made, especially the ideal gas assumption, and to 

suggest possible improvements which would still enable 

them to be used 

At the same 

of Ref. 13 is s 

but with greater accuracy. 

time the basic one-dimensional model 

ightly reformulated to account for t le 

equation of state effects. This model is then used to 

calculate the flow field subsequent to impact, in 

particular the interaction of the rarefaction waves 

formed when the impact shocks reach the end of both 

the pellet and the bumper. It is hoped that a one- 

dimensional consideration of this type will account 

for much of the upstream flow observed in the 

photographic study of Ref. 15. 
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FIGURE 1 - FRAMING CAMERA SEQUENCE 

Impact of a. 12.7 mm. diameter, 8.9 mm. long 

Lexan plastic cylinder against a 2.54 mm. thick Nylon 

bumper plate. The impact velocity was 6.0 Km/sec. 

The time between exposures 1.07u sec. and the exposure 

time 0.45 p( sec. The range pressure was 0.2 microns of 

mercury, 



FIG, 1 (CONT ' D ) 



24 

2.2 Geometry of the One-Dimensional Formulation 

In order to reduce the problem down to its simplest 

form, we consider the axi-symmetric impact of a right- 

cylindrical pellet of length L, and radius ro, with a 

thin bumper plate of thickness 6 
the pellet is directed along its axis of symmetry and is 

at right angles to the bumper. 

. The velocity V, of 

Furthermore, we make the gross simplification that the 

cylindrical edge effects can be neglected. This will 

only be strictly true for disk-like pellets with very 

small length to diameter ratios (i.e. L/2r0<< 1). A 

one-dimensional analysis however, will still be valid for 

longer pellets at the axis of symmetry as long as the 

radial interactions have not had time to reach the center. 
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2.3 Shock System 

Using the  above i d e a l i z a t i o n ,  w e  have t h a t  on t h e  

moment of impact p l ane  shock waves are developed, one 

e n t e r i n g  t h e  p e l l e t ,  Spy and the  o t h e r ,  SB, e n t e r i n g  the  

bumper m a t e r i a l ,  

L 

The shock-wave s y s  t e m  t hus  generated 

i s  i l l u s t r a t e d  i n  t h e  fol lowing 

‘d 0 

c Bo 
13 Bo 
E B o  

at rest 

Q Po 

EPO 

ske tch .  

We have shown p rev ious ly  t h a t  f o r  a normal shock 

the  fo l lowing  r e l a t i o n s  hold with g r e a t  g e n e r a l i t y  

2 .3 .1  

2.3.2 

2.3.3 

These equations apply t o  both t h e  p e l l e t  and bumper shocks 

g iv ing  s i x  equat ions i n  the  10 unknown p, 

c B,  E p ,  EB, up ¶ U B ,  wP and WB. 

, pB, C p ,  
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The remaining four equations are obtained from the 

equations of state in the form 

2 . 3 . 4  

and from the continuity of velocity and pressure 

across the contact front, C, between the pellet and bumper 

ma t er ia 1 

J 

v- k p  = L B  2 . 3 . 5  

2 . 3 . 6  

Experimental determination of shocked states such as 

described in section 1.2 give a single relation in 

and which essentially is a combination of equations 

2 . 3 . 3  and 2 . 3 . 4  called the Hugoniot curve. TABLE I gives 

a curve fit for Hugoniot curves for various materials. 

Using these experimental curve fits the system of 

equations 2.3.1 - 2 . 3 . 6  was solved by an iterative 

technique for various material combinations. 
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2.4 Interaction Times and Distances 
c 

When the shock waves S t  an' 
L. 

SB reac.. the free 

surfaces of the pellet and bumper respectively centered 

rarefaction waves Rq 

satisfy the zero pressure boundary condition at these 

2 L 

and RB are set up in order to 

surfaces. The wave system subsequent to this interaction 

is best illustrated by a x-t diagram as follows. 

The points of initiation of the rarefaction waves 

are the points where the shocks reach the free surfaces. 

These are found as follows: 

2.4 .1  

2.4.2 
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The head of a r a r e f a c t i o n  wave moves i n t o  a medium 

a t  the  v e l o c i t y  of sound of t h a t  medium. I n  gene ra l  f o r  

any c h a r a c t e r i s t i c  (of which the  head and t a i l  of a 

r a r e f a c t i o n  a r e  j u s t  s p e c i a l  c a s e s )  t h e  s l o p e  i s  given by: 

- =  dx u + c  for 
d k  

f o r  

Now i f  U B , C B  and C are 

s e c t i o n  w e  can f i n d  t h e  p o i n t s  

P 

t o  i n t e r a c t  with c o n t a c t  f r o n t  

Contact f r o n t :  - 

Lc, t, 

a h l  c h a r a c t e r i s t i c  

a A, c h a r a c t e r i s t i c  

known from the  previous 

where r a r e f a c t i o n s  s ta r t  

and each o t h e r .  

I n t e r a c t i o n :  - 
(r, -%) + t, (\+Cy) , . 

2a P 

2 . 4 . 3  

2 . 4 . 4  1 
Excluded from t h e  above i s  the  c a s e  where t h e  

r a r e f a c t i o n s  reach the  shocks be fo re  shocks r each  f r e e  

s u r f a c e s .  The r e s u l t i n g  shock a t t e n u a t i o n  r e s u l t s  i n  

non- i sen t rop ic  flow which r e q u i r e s  s l i g h t l y  d i f f e r e n t  

t r ea tmen t .  This l i m i t s  bumper t o  p e l l e t  l eng th  r a t i o s  

( 6 / L )  t o  g r e a t e r  than 1/5 f o r  most material  combinations. 
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The interaction points are plotted as a function of 

the bumper thickness and impact velocity for various 

material combinations in Figs. 2, 3 and 4 .  The thermo- 

dynamic data for the shocked states was again obtained 

from Al'tshuler's experiments (Refs. 6 and 7). 
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2.5 The Interaction Region 

At times greater than tI the flow no longer consists 

of simple waves of one family of characteristics and the 

interaction of the rarefactions has to be considered. 

Explicit solutions of this problem exist (Ref. 17) but 

these are complicated and applicable only to ideal gases 

and then only for certain specific values of the ratio 

of specific heats, J\. 

In order t o  determine the effect of more realistic 

equations than the ideal gas approximation resort has to 

be made to numerical techniques. The method used here is 

a finite difference technique based on the method of 

characteristics developed in Appendix A. 

In order to apply the method, we need two points A 

and B where all the flow parameters are known. We can 

then determine the corresponding parameters at a point P, 

which is the intersection of the 1 
through A and the characteristic through B as 

characteristic 

illustrated in the following figure. 

t 

Y 
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Making the basic assumption that the points are 

chosen sufficiently close together so that the dependent 

variables can be taken to vary linearly between adjacent 

points, we write the characteristic equations ( A . 8  and 

A . 9 )  in the following finite difference form. 

2.5 .1  

2.5.2 

A s  a first approximation, the values of the 

quantities subscripted A, and Armay be taken as those 
values at the points A and B respectively. 

corresponds t o  a linear extrapolation and enables one 

to solve equations 2 . 5 . 1  and 2 . 5 . 2  explicitly for point 

P in terms of quantities at points A and B only, 

knowing of course, the equation of the isentrope linking 

This 

e P, and c. 

The second approximation then takes the average 

values for A between points A and P and points 

B and P respectively. The values for P being determined 

previously from the linear extrapolation. 

and A 
I 2 
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This procedure is in essence a trapezoidal rule type 

of numerical integration of the variables along the 

characteristics. 

The above enables us to solve a characteristic 

mesh provided we always have two points to start the 

process. 

In order to illustrate the method, we take the 

following characteristic net. 

The h, characteristics are numbered I and the Jt 
characteristics J. The point I = i, J = j is an 

undetermined point within the net. 

that all points I L i, J and I, J L j have been 

previously determined, we can apply equations 2.5.1 

and 2.5.2 to find the undetermined points. 

Now if we assume 



36 

Modifying equations 2 . 5 . 1  and 2 . 5 . 2  to include the 

subscripted notation of the characteristic net and 

solving them for the variables u (i, j), x (i, j), 

t (i, j), we have: 

where 

2 . 5 . 3  

2 . 5 . 4  

for the first approximation. In the second approximation 

the mean values are indicated by: 

2 . 5 . 5  

furthermore 

From this we can determine e (i, j) and c(i, j) 

through the equation of the isentrope. 
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The location of the next mesh point is then given by: 

- where 

2.5.8 

for the second approximation. 

Furthermore 

This then demonstrated how points within the 

interaction region may be calculated. It remains to 

be shown how the process may be started at the boundaries 

of the interaction region. 
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2 . 6  Boundaries of t he  I n t e r a c t i o n  Region 

I n  order  t o  s t a r t  t h e  procedure desc r ibed  i n  t h e  

previous s e c t i o n ,  w e  need cond i t ions  a long  t h e  

c h a r a c t e r i s t i c  l i n e s  J = 1 and I = 1 .  These are 

t h e  f i r s t  c h a r a c t e r i s t i c s  c r o s s i n g  the r a r e f a c t i o n  

waves RB and R r e s p e c t i v e l y .  
4- 2 

& 

For t h e  bumper r a r e f a c t i o n ,  RB, we have t h e  

f o 1 1 owing geome t r y  : 

where f o r  the moment we have assumed t h a t  t he  cen te red  

r a r e f a c t i o n  RB does no t  pass  through a c o n t a c t  f r o n t .  
& 

The i n t e r a c t i o n  of t he  wave wi th  a c o n t a c t  f r o n t  w i l l  

be discussed i n  t h e  next  s e c t i o n  and the  p r e s e n t  

a n a l y s i s  i s  on ly  s t r i c t l y  a p p l i c a b l e  t o  t h e  impact of 

l i k e  m a t e r i a l s .  

A t  t h i s  p o i n t  i t  becomes necessa ry  t o  s p e c i f y  our  

i n t e r v a l  or g r i d  s i z e .  Since the  f r e e  s u r f a c e  boundary 

cond i t ion  i s  one of p r e s s u r e  ( p = o a t  t h e  f r e e  

s u r f a c e ) ,  we d e f i n e  our  i n t e r v a l  A p s o  t h a t  



39 

2 . 6 . 1  

From equation 2 . 6 . 1  we can determine (i, 1) and 

c (i, 1) through the specified isentrope. 

The velocity, u (i, 1) can then be determined from 

the first of equations ( A . 9 )  as follows: 

Where the subscript (i - 3  ) as before indicates the 

average value of the parameters between (i -1) and (i). 

The location of point (i, 1) can then be found 

from equations 2 . 5 . 7  and 2 . 5 . 9  as  

2 . 6 . 5  

The second approximation is used here throughout since 

an explicit form can be obtained and no iteration is 

necessary. 
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-A 
For the pellet rarefaction, R P  , exactly the 

same procedure is used except the subscripts I and J 

are interchanged. The initial condition x (1, l), 

t (1, 1) is the same for both rarefaction waves and 

is previously calculated as xI, tI. 

In the above, we have neglected the interaction of 

the bumper rarefaction with the contact front (for 

dissimilar materials) and we go on to the next section 

to discuss the necessary modifications. 
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2 . 7  I n t e r a c t i o n  with a Contact Surface 

Since the bumper i s  always cons ide rab ly  t h i n n e r  

than t h e  p e l l e t ,  the  bumper r a r e f a c t i o n  always i n t e r -  

a c t s  f i r s t  with t h e  c o n t a c t  f r o n t  be fo re  meet ing t h e  

p e l l e t  r a r e f a c t i o n .  We t h e r e f o r e ,  consider  t h e  

problem of a cen te red  r a r e f a c t i o n  RB i n t e r a c t i n g  wi th  

a c o n t a c t  f r o n t  C. The geometry of t h e  problem i s  as 

6 

4 

I n  order t o  d i f f e r e n t i a t e  between m a t e r i a l s ,  we 

s u b s c r i p t  p e l l e t  m a t e r i a l ,  P and bumper material  B. 

The bas i c  cond i t ions  a c r o s s  a c o n t a c t  f r o n t  a r e :  

2 . 7 . 1  

and 2 . 7 . 2  

The f i r s t  c o n d i t i o n  governs t h e  motion of t h e  f r o n t  

and the  second enab le s  one t o  t r a n s f e r  thermodynamic 

q u a n t i t i e s  a c r o s s  the f r o n t .  
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From previous calculations we know conditions 

at points xc, tc and xB, 

reflected and transmitted waves from the contact front. 

Note that the transmitted waves are simple since they 

are entering a region of constant properties (see 

Appendix B). 

tB. There will be both 

The first reflected characteristic JJ = 1 is 

found in exactly the same manner as in the previous 

section, the only difference being the replacement of 

5' xc, t for xI, C 

To start the calculation of the next row JJ, we 

need to calculate the next point along the contact 

front. For points on the contact front I = JJ. 

Taking any point (i, i) on the contact front, we 

assume that all points previous to it have been 

determined for all I. 

The fact that the transmitted characteristics 

are of only one family (simple waves) enables us to 

use the following equation 

for the variation from one characteristic to another, 

properties being constant along any one characteristic. 

In addition, we have the conditions along the left 

running characteristic intersecting at (i, i) plus the 

constant pressure condition across the contact front 

it321f. 
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In terms of these conditions, we can then solve 

for u (i, i) and p (i, i) as follows: 

for the first approximation. 

In the second approximation they are: 

2 . 7 . 3  

2 . 7 . 4  

2 . 7 . 5  

2 . 7 . 6  

Knowing p (i, i) thermodynamic conditions on both 

sides of the contact front can be found through the 

respective isentropes and the continuity of pressure 

across the contact front. 

The location of the point (i, i) is simply 

determined from the condition that the front moves at 

the local particle velocity and the intersection of 

the left running characteristic at (i, i) as follows: 
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2.7.8 

where the second approximation is used with no 

iteration being necessary. 

Having determined the next point on the contact 

front, points along the line JJ = i can then be 

determined using the method of Section 2.5. In this 

manner the whole region can be solved and the 

transmitted wave although not centered any more is 

still simple and the interaction problem can be 

handled as previously, with point (XB, tB) being 

replaced by the corresponding (x (i), t (i) ) for 

I = JJ (i.e., points on the contact front3 
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2.8 Calculation of the Isentropes and Several 
Approximat ions 

In the previous section, we have assumed the 

(p) along the e -  y is (P) and c = cis functions 

isentropes as known. They may be obtained by 

considering the second law of thermodynamics in 

differential form. 

For an isentropic process this reduces to 

or integrating 

2.8.1 

2.8.2 

Substituting equation 2.8.2 into the equation of 

state 1.3.7 and 1.3.8 and numerically integrating the 

isentropes can be obtained. 

Several aluminum isentropes have been plotted in 

Fig. 5 along with the Hugoniot curve calculated from 

equation 1.3.7. Note that as the material is more 

strongly shocked, the isentropic expansion becomes 

more and more like that of a gas (i.e. q-+, o and 
p, --9 0). The experimental points of Walsh (Ref. 1) 

and Al'tshuler (Ref. 6 )  are also given showing 

exce 11 en t agreement . 
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There a r e  s e v e r a l  approximate equa t ions  f o r  

s o l i a  i s en t ropes .  

Murnaghan’s (Ref. 23) .  

One of t he  most widely used i s  

2.8.3 

This equat ion i s  based on t h e  theo ry  of f i n i t e  s t r a i n  

and shows good q u a l i t a t i v e  agreement w i t h  m e t a l  

behaviour and wi th  condensed s ta tes  ir! general .  

Chou a t  a l ,  (Ref. 18) has  t a b u l a t e d  the c o n s t a n t s  

&, 
aluminum. Ite ob ta ined  these  c o n s t a n t s  by f i t t i n g  

equa t ion  2.8.3 t o  i s e n t r o p e s  c a l c u l a t e d  from 

T i l l o t s o n ’ s  equa t ions  (equat ions 1 .3 .7  and 1.3.8). 

Comparison of equa t ion  2.8.3 wi th  t h e  more a c c u r a t e  

i s e n t r o p e s  shows good agreement throughout t h e  

p r e s s u r e  range, w i th  t h e  b e s t  agreement shown f o r  

f m ,  and B, f o r  v a r i o u s  shock s t r e n g t h s  i n  

t h e  no t  so s t r o n g l y  shocked i s e n t r o p e s  (Figs. 6 & 7).  

As  t h e  m a t e r i a l  becomes more s t r o n g l y  shocked, 

t h e  constant  E&, o and the  material  behaves more 

and more l i k e  a gas ,  When Bm = 0 ,  equa t ion  2 .8 .3  

becomes the i d e a l  gas equat ion f o r  ah i s e n t r o p e  

2.8.4 

The cons t an t  r i d  is found from t h e  i n i t i a l  shocked 

s t a t e  as follows: 
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i . e . ,  for  a n  i d e a l  gas 

k I 
E =  P t d - '  P 

eva lua ted  

a t  a p o i n t  on the  Hugoniot. 

Aid i s  c a l c u l a t e d  from the  i n i t i a l  shocked s t a t e .  

Comparison of equa t ion  2 . 8 . 4  wi th  equat ion 

2 . 8 . 3  and the numerical ly  i n t e g r a t e d  i s e n t r o p e s  

shows s u r p r i s i n g l y  good agreement f o r  reasonably 

high pressures  (above 1 / 4  x shock p r e s s u r e ) .  

For computer c a l c u l a t i o n s  r e l a t i v e l y  l i t t l e  i s  

gained by using t h e s e  s impler  forms, s i n c e  e i t h e r  

T i l l o t s o n ' s  equa t ions  d i r e c t l y  o r  curve f i t s  t o  t h e  

i s e n t r o p e s  can be used q u i t e  r e a d i l y ,  The 

importance of such simple forms as equa t ions  2 .8 .3  

and 2 . 8 . 4  l i e s  i n  the f a c t  t h a t  c losed  s o l u t i o n s  

can q u i t e  o f t e n  be ob ta ined  with t h e  r e s u l t i n g  

i n s i g h t  on how the  v a r i o u s  parameters a f f e c t  t he  

prob 1 em. 
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3 .  RESULTS AND DISCUSSIONS 

3 . 1  I n i t i a l  S t a t e s  

The s t rong  shock system i n i t i a l l y  formed on 

impact can nea r ly  always be r ep resen ted  by a one- 

dimensional formulat ion u n l e s s  t he  impact geometry 

i s  unusual (e.g. a cone impact ing v e r t e x  f i r s t ) ,  

Therefore ,  the shock system considered i n  S e c t i o n  2 . 3  

has  general  a p p l i c a t i o n  t o  t h e  e n t i r e  h y p e r v e l o c i t y  

impact problem. 

I n  so lv ing  the  system of equa t ions  o r  S e c t i o n  

2 . 3 ,  t h e  i n i t i a l  p r e s s u r e  po w a s  neg lec t ed  wi th  

r e s p e c t  t o  the  shocked p r e s s u r e .  The experimental  

Hugoniot curves r e p o r t e d  i n  R e f .  6 were used. They 

r e p r e s e n t  b e s t  f i t  d a t a  of a l l  experimental  work t o  

d a t e  and have a n  accuracy of approximately ? 1% of 

the  shock p res su re .  One drawback i s  u s i n g  such 

information i s  t h a t  i t  cannot be e x t r a p o l a t e d  much 

beyond the range of t h e  experimental  d a t a  and 

t h e r e f o r e ,  t he  c a l c u l a t i o n s  a r e  l i m i t e d  t o  below 

15 km/sec. impact v e l o c i t y .  

The equat ions were then solved u s i n g  an i t e r a t i v e  

technique (Newton-Raphson method) f o r  t h e  shock 

parameters p ,  C , E ,  u ,  andW as a f u n c t i o n  of t h e  

impact v e l o c i t y  V .  The r e s u l t s  a r e  p l o t t e d  i n  

F i g s .  8 - 11 f o r  t h e  impact of aluminum on copper ,  

l ead  and aluminum. These r e s u l t s  correspond c l o s e l y  

t c  the  ones publ ished by Maiden (Ref. 1 6 )  which i s  
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no t  s u r p r i s i n g  s i n c e  t h e  same experimental  d a t a  was 

used i n  both cases .  For a more exhaus t ive  coverage 

of m a t e r i a l  combinations t h e  r eade r  i s  r e f e r r e d  t o  

Maiden's work where t h e  impact of aluminum on 

magnesium, aluminum, t i t a n i u m  and gold i s  considered.  

The general  t r e n d  i s  c l e a r .  A s  the  bumper 

m a t e r i a l  i nc reases  i n  d e n s i t y ,  t he  p e l l e t  m a t e r i a l  

i s  more s t rong ly  shocked f o r  t he  same impact v e l o c i t y  

and a t  t he  same time t h e  p a r t i c l e  v e l o c i t y  behind 

the  bumper shock i s  reduced. I n  o t h e r  words a 

denser  bumper i s  more e f f e c t i v e  i n  r educ ing  the 

r e s u l t a n t  v e l o c i t y  of t he  system and i n  t h e  process  

conve r t s  t h i s  k i n e t i c  energy i n t o  h ighe r  thermo- 

dynamic s t a t e s .  

I n  a d d i t i o n ,  n e a r l y  l i n e a r  r e l a t i o n s  hold f o r  

the v a r i a t i o n  of t he  v e l o c i t i e s  u ,  and w wi th  

impact v e l o c i t y .  This c u r i o u s  f a c t  has  been noted 

i n  the experimental  de t e rmina t ion  of shock Hugoniots 

and no t r u l y  s a t i s f a c t o r y  exp lana t ion  has  been 

advanced f o r  t h i s  phenomenon a t  t h i s  d a t e  (Ref. 8 )  

Many of  t h e  e f f e c t s  observed h e r e  had been 

explained q u a l i t a t i v e l y  i n  e a r l i e r  r e p o r t s  (Refs. 13 

and 14)  using t h e  i d e a l  gas approximation. For 

example the behaviour of the impact of d i f f e r e n t  

m a t e r i a l s  can  b e s t  be examined by looking a t  t he  

behaviour of t he  bumper p a r t i c l e  v e l o c i t y ,  uB. 
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The r e l a t i o n  de r ived  i n  Ref. 13 f o r  uB i s :  

3 . 1 . 1  

r'b I 
Under t h e  idea l  gas assumption,  t h e  r a t i o  - 

\ 

i s  a cons t an t .  Therefore ,  w e  p l o t  ( r K t l  f': . 

v e r s u s  impact v e l o c i t y  V f o r  t h e  case of aluminum on 
J X ' p t l  y: ' t .  

copper impact i n  F ig .  11-A.  Although t h e  func t ion  

o s c i l l a t e s  s lowly as impact v e l o c i t y  i n c r e a s e s ,  i t s  

v a l u e  remains p r a c t i c a l l y  c o n s t a n t  w i t h i n  narrow 

l i m i t s .  This o s c i l l a t i o n  can be expla ined  as due t o  

t h e  o r i g i n a l  c u r v e - f i t t i n g  of exper imenta l  d a t a .  

We can t h e r e f o r e  say  t h a t  a l though 6 i s  i n  

genera l  a func t ion  of  t h e  d e n s i t y  e 
of t h e  impact v e l o c i t y  V ,  t h e  v a r i a t i o n  f o r  two 

, o r  i n d i r e c t l y  

d i f f e r e n t  m a t e r i a l s  i s  s u f f i c i e n t l y  a l i k e  f o r  t he  

r a t i o  ' - t o  remain e s s e n t i a l l y  cons t an t .  
" 1  

, .  

r p +  1 

The speed of sound i n  t h e  shocked s ta teswas  

a l s o  c a l c u l a t e d  from t h e  Russian exper imenta l  d a t a  

(Ref. 7 ,  see  TABLE 11). The r e s u l t s  are  p l o t t e d  i n  

F igures  1 2  and 13,  f o r  t h e  v a r i o u s  material  

combinations.  

I n  comparing these  v a l u e s  t o  the  i d e a l  gas 

approximation, a n  i n c o n s i s t e n c y  ar ises .  Using t h e  

s t r o n g  shock approximation,  t h e  d e n s i t y  r a t i o  f o r  
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an ideal gas becomes: 

3.1.2 



58 a 



59 



60 



61 

Also ,  for an ideal gas the speed of sound is 

given by : 

3 . 1 . 3  

where both 8 ' s  are the same in a self-consistent 

theory, From the experimental data, however, it is 

found that separate determinations of k from 
equations 3 . 1 . 2  and 3.1.3 differ by as much as 30% 

with the from equation 3 . 1 . 3  being always lower. is 
The obvious explanation would be to say that the 

material does not behave as an ideal gas and we 

have therefore no reason to expect a consistency. 

There is however, a more fundamental reason for this 

discrepancy. In determining from the shock density 

ratio we are considering a transition from unshocked 

states to final shocked states. 

this manner is representative of the whole range and 

is an average value. The second determination 

considers only the final shocked state and is there- 

fore only representative of this final state, 

b  ̂

The i' calculated in 

This view is supported by the fact that 

isentropes calculated by using the from equation 

3.1.2 agree surprisingly well with more exact 

determinations as in section 2 . 8 .  
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3 . 2  I n t e r a c t i o n  Poincs 

A n a t u r a l  development of t h e  c a l c u l a t i o n  of t he  

i n i t i a l  s t a t e s  i s  t h e  l o c a t i o n  of t he  p o i n t  where 

the r a r e f a c t i o n  wav'es f i r s t  i n t e r a c t ,  marking the  

disappearance o f  t he  r eg ion  of c o n s t a n t  p r o p e r t i e s  

e x i s t i n g  behind t h e  shocks. 

This  c a l c u l a t i o n  as desc r ibed  i n  s e c t i o n  2.4 

i n t roduces  t h e  geometry of t h e  one-dimensional impact 

i . e .  p e l l e t  and bumper l e n g t h s )  and w e  can thus  s tudy  

t h e  i n t e r r e l a t e d  e f f e c t s  of v e l o c i t y  and bumper p l a t e  

t h i ckness  

Since the  r e s u l t s  can be s c a l e d  a l l  c a l c u l a t i o n s ,  

h e r e  and subsequent t o  t h i s  s e c t i o n ,  have been 

performed f o r  a s t anda rd  10 mm long aluminum p e l l e t .  

I n  F i g s ,  2 ,  3 ,  4 ,  t h e  l o c a t i o n  of t h e  i n t e r a c t i o n  

p o i n t  (xi, t i )  i s  p l o t t e d  as  a f u n c t i o n  of impact 

v e l o c i t y  and bumper th i ckness  f o r  t h e  impact of 

aluminum on aluminum, copper and l ead  r e s p e c t i v e l y .  

A s  can be seen from the graphs,  both impact 

v e l o c i t y  and bumper p l a t e  t h i c k n e s s  g r e a t l y  

in f luence  t h e  p o i n t  of i n t e r a c t i o n .  Both a n  i n c r e a s e  

i n  impact v e l o c i t y  and bumper t h i c k n e s s  tend t o  

d r i v e  the i n t e r a c t i o n  p o i n t  f u r t h e r  t o  t h e  r i g h t  

(towards p o s i t i v e  x ) .  
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A change i n  bumper m a t e r i a l  a l s o  causes  

important change as can be seen by comparing 

Figs .  2 & 4 .  The bumper th i ckness  seems t o  become 

a m c h  more important  parameter as the  bumper d e n s i t y  

i s  inc reased ,  w i th  impact v e l o c i t y  having a decreased 

importance except  i n  determining t h e  time of i n t e r -  

a c t i o n .  

Another important  f a c t  i s  t h a t  t h e s e  graphs p o i n t  

o u t  the l o c a t i o n  of t h e  p e l l e t  shock. For most 

impacts i n  t h e  experimental  range,  W p 2  V ,  meaning 

t h a t  t h e  p e l l e t  shock l i e s  ahead of t h e  bumper 

(negat ive x) .  The broken l i n e  shows the  p o i n t s  

(xp, tP) where t h e  p e l l e t  shock f i r s t  r eaches  t h e  

p e l l e t  f r e e - s u r f a c e ,  which of course i s  the  f u r t h e s t  

p o i n t  t he  p e l l e t  shock w i l l  ever  reach, AE i n c r e a s e  

i n  impact v e l o c i t y  i s  seen  t o  b r i n g  t h e  shock c l o s e r  

t o  the  bumper u n t i l  f o r  a n  impact v e l o c i t y  of 15.5 

km/sec the shock l i e s  r i g h t  on t h e  bumper f o r  

aluminum on aluminum impact,  For denser  bumper 

m a t e r i a l s  t h e  shock l i e s  even f u r t h e r  from t h e  bumper 

a t  t h e  same v e l o c i t y .  The p o s i t i o n  of t h e  p e l l e t  

shock has a g r e a t  e f f e c t  i n  determining upstream flow 

(negative x )  e s p e c i a l l y  r a d i a l  f low e f f e c t s  f o r  f i n i t e  

diameter p e l l e t s .  Radial  e f f e c t s  a r e  of cour se  

excluded i n  our one-dimensional a n a l y s i s  bu t  cannot be 

neglected f o r  p e l l e t s  of f i n i t e  d i ame te r ,  even a t  ve ry  

s h o r t  times a f t e r  impact.  
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3 3 The I n t e r a c t i o n  R s i o n  

3 . 3  1 

-- --- 
Accuracy of t h e  Numerical Techniques -- ----- -___--- 

The c a l c u l a t i o n  procedure o u t l i n e d  i n  Sec t ion  

2 5 ,  2.6 and 2 . 7  w a s  used t o  w r i t e  a computer program 

i n  the  For t r an  coding system fox an  I B M  7040 d i g i t a l  

computer. The c a l c u l a t i o n  of t he  i n i t i a l  s t a t e s  (as 

i n  Sect ions 2 . 3  and 2 4 )  w a s  included i n  t h i s  program 

s o  t h a t  only the  impact v e l o c i t y ,  bumper th i ckness  

and p r o p e r t i e s  of t h e  m a t e r i a l s  had t o  be f e d  i n t o  

the  program as t h e  v a r i a b l e  parameters  

I n  s p e c i f y i n g  t h e  g r i d  s i z e ,  t h e  method i: duced  

i n  Sect ion 2 .6  w a s  used (equat ion 2 . 6 . 1  1 A p w a s  

s e t  equal t o  -ps/lOO i n  almost  a l l  cases c a l c u l a t e d  

where ps i s  the  i n i t i a l  shock p r e s s u r e  This i n t e r v a l  

s i z e  w a s  found t o  g ive  s t a b l e ' a n d  a c c u r a t e  r e s u l t s  up 

t o  t imes a f t e r  impact t f  abou t  2 . 5 6  s e c .  f o r  a 

s t anda rd  10 mm long p e l l e t .  4 t  t imes g r e a t e r  than 

about 3 4  s e c .  t he  mesh s i z e  diverged and the  

f i n i t e  d i f f e r e n c e  procedure became u n s t a b l e ,  

The accuracy and s t a b i l i t y  of t h e  program were 

checked by comparing the  r e s u l t s  t o  s e v e r a l  e x a c t  

s o l u t i o n s  given by Stanyuokovich ( r e f .  1 7 )  f o r  t h e  

i n t e r a c t i o n  of r a r e f a c t i o n  waves u s i n g  the  s p e c i a l  

ca se  of an  i d e a l  gas wi th  3' = 3 

w i t h i n  ? 1% f o r  t imes less than  2 . 5 - A (  s e c  

The r e s u l t s  agreed 
0 

a f t e r  

which the answers became i n c r e a s i n g l y  i n a c c u r a t e  
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S ince  a one-dimensional a n a l y s i s  i s  only v a l i d  

f o r  s h o r t  times a f t e r  impact,  a n  improvement of t he  

long  term performance of t h e  program w a s  n o t  

a t tempted.  

3 .3 .2  E f f e c t  of Equation of S t a t e  on Expansion 

A f t e r  n o t i n g  the  s u r p r i s i n g l y  good agreement of 

t he  cons t an t  ,;" approximation a t  h i g h  p r e s s u r e s  

(Sec t ion  2.8) i t  was decided t o  s e e  i f  t h i s  agreement 

cou ld  be extended t o  c a l c u l a t i o n s  t h a t  included t h e  

dynamics of  t h e  problem. 

Using as  the  "exact" i s e n t r o p e  a polynomial 

c u r v e - f i t  t o  t h e  numerical ly  i n t e g r a t e d  T i l l o t s o n  

equa t ion  (see S e c t i o n  2 . 8 ) ,  t h e  case  of  impact of 

aluininun on aluininum a t  10 .07  km/sec. w a s  

c a l c u l a t e d .  I n  the  c a l c u l a t i o n s  whenever a 

nega t ive  p r e s s u r e  occurred i t  was s e t  t o  z2ro.  

Negative p r e s s u r e s  s i g n i  f y t c n s i  l e  s t r e s s e s  w l i i  ch 

coiJld be p e r n i t t e d  i n  a s o l i d  system, s e t t i n g  t h e  

nega t ive  p r e s s u r e  equal  t o  ze ro  s i g n i f i e s  t h a t  t he  

s o l i d  has y i e l d e d  (do t t ed  l i n e s  i n  F i g s .  1 4 ,  16 and 

1 7 ) .  

I n  Figs. 14 and 15, w e  show t h e  d e n s i t y  and 

p res su re  p r o f i l e s  r e s p e c t i v e l y  a t  t i m e s  t ) ,  

0 . 1 ,  and tI + 0 . 2  a f t e r  impact ,  where t I  i s  the  

time a t  which t h e  r a r e f a c t i o n  waces f i r s t  s t a r t  t o  

i n t e r a c t .  

tI + I 
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The graphs show a t y p i c a l  s o l i d  behaviour i n  t h a t  

the d e n s i t y  does not f a l l  t o  zero a t  t h e  escape f r o n t  

and a l s o  a r a t h e r  r a p i d  r e l a x a t i o n  of s t a t i c  p r e s s u r e  of 

the  material .  

The above case was now r e c a l c u l a t e d  u s i n g  the same 

i n i t i a l  cond i t ions  b u t  u s i n g  a p o l y t r o p i c  gas l a w  

c a l c u l a t e d  according t o  equa t ions  2.8.4 and 3 . 1 . 2 .  

F i g s ,  16  and 1 7  give t h e  d e n s i t y  and p res su re  

p r o f i l e s  r e s p e c t i v e l y  a t  t ime, tI + 0.1 sec.  f o r  both t h e  

"exact" and "polytropic"  c a s e ,  

Both peak d e n s i t y  and p r e s s u r e  are  i d e n t i c a l  i n  

both c a s e s  b u t  the "polytropic"  expansion has  a shal lower 

p r o f i l e  in t h e  low p r e s s u r e  r e g i o n ,  The b i g  d i f f e r e n c e  i s  

t h e  l o c a t i o n  of the escape f r o n t s  where p re s su re  equa l s  

ze ro ,  For the  "polytropic"  gas t h e  escape f r o n t  l i e s  f a r  

beyond those c a l c u l a t e d  u s i n g  t h e  more exac t  s o l u t i o n .  

However, long before  t h e  escape f r o n t  i s  reached,  the 

p r e s s u r e  has  e f f e c t i v e l y  dropped t o  zero (with r e s p e c t  

t o  peak p r e s s u r e )  f o r  t he  "polytropic"  gas. Thus, t h e  

" e f f e c t i v e  escape f r o n t "  where t h e  f i r s t  "observable" 

p r e s s u r e  occurs i s  much c l o s e r  t o  t h e  more exac t  s o l u t i o n  

than i s  ind ica t ed  a t  a f i r s t  glance when the  "escape 

f r o n t s "  a r e  compared. 
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The case t e s t e d  h e r e  i s  a c t u a l l y  q u i t e  s eve re  

s i n c e  t h e  m a t e r i a l  was n o t  shocked s t r o n g l y  enough 

t o  completely vapourize i t .  

f i n i t e  dens i ty  a t  t h e  escape f r o n t ,  which can of 

cour se ,  never be approached by a p o l y t r o p i c  gas ,  

Nevertheless ,  a s a t i s f a c t o r y  gene ra l  agreement i s  

noted w i t h  p r a c t i c a l l y  exac t  agreement i n  t h e  h igh  

p r e s s u r e  region. A s  w a s  shown i n  Sec t ion  2.8, t h e  

agreement between the  p o l y t r o p i c  gas laws and the  

more exact  i s e n t r o p e s  become much b e t t e r  i n  the  low 

p r e s s u r e  r eg ion  as t h e  m a t e r i a l  becomes more 

s t r o n g l y  shocked. 

This r e s u l t e d  i n  a 

3 . 3 . 3  Sur face  of Zero Ve loc i ty  

The p e l l e t  escape wave g e n e r a l l y  moves wi th  

nega t ive  v e l o c i t y  ( i . e .  upstream) wh i l e  t he  bumper 

escape wave moves i n  a p o s i t i v e  d i r e c t i o n  (downstream). 

Somewhere i n  between these  two extremes t h e r e  must be 

a p o i n t  of z e r o  v e l o c i t y .  The de te rmina t ion  of t h e s e  

p o i n t s  of ze ro  v e l o c i t y  w i l l  then give a n  i n d i c a t i o n  

of t h e  amount of flow t h a t  occu r s  upstream o r  down- 

s t ream of t h e  bumper. 

In  order t o  s tudy  the  gene ra l  behaviour of t h e s e  

s u r f a c e s  of ze ro  v e l o c i t y  as a f u n c t i o n  of impact 

v e l o c i t y  and bumper m a t e r i a l ,  a s e r i e s  of c a s e s  were 

c a l c u l a t e d  u s i n g  e i t h e r  aluminum o r  copper as bumper 

m a t e r i a l  a t  impact v e l o c i t i e s  va ry ing  from 5 - 15 km/ 

s e c .  
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F I G .  20 COMPARISON OF EXACT SOLUTION OF CONTACT 
FRONT W I T H  SOLUTION NEGLECTION NEGLECTING 
REFLECTIONS. 
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The i n i t i a l  s t a t e s  were c a l c u l a t e d  from 

A l ' t s h u l e r ' s  experimental  d a t a  (TABLES I & 11) and 

the  i d e a l  gas approximation was used f o r  the 

expansion s t a t e s .  This las t  approach seemed 

j u s t i f i e d  from the  c o n s i d e r a t i o n s  of t h e  previous 

s e c t i o n  and a l s o  of S e c t i o n  2 . 8 ,  e s p e c i a l l y  a t  

impact v e l o c i t i e s  above 10 km/sec. 

The r e s u l t s  a re  presented i n  F igs .  18 & 19 f o r  

aluminum on aluminum and copper impacts r e s p e c t i v e l y .  

A s t r o n g  dependence of t he  zero v e l o c i t y  curves  i s  

noted both on impact v e l o c i t y  and bumper m a t e r i a l  

(dens i ty ) ,  a n  i n c r e a s e  i n  both tends t o  d r i v e  the  

curves toward p o s i t i v e  x wh i l e  t h e  gene ra l  shape 

tends t o  remain c o n s t a n t .  

3.3.4 Ref l ec t ions  from the  Contact F ron t  

I n  some of t h e  previous t h e o r e t i c a l  work (Ref.14) 

t h e  r e f l e c t e d  waves from t h e  c o n t a c t  f r o n t  had been 

assumed not  t o  a f f e c t  t he  i n c i d e n t  r a r e f a c t i o n  wave. 

The c a l c u l a t i o n s  of t h e  impact of d i s s i m i l a r  

m a t e r i a l s  show t h a t  t h i s  approximation al though v a l i d  

near the p o i n t s  (xc, tc) where t h e  r a r e f a c t i o n  f i r s t  

s ta r t s  t o  i n t e r a c t  w i th  t h e  c o n t a c t  f r o n t  becomes 

i n c r e a s i n g l y  i n a c c u r a t e  as one p rogres ses  i n  time 

a l o n g  the c o n t a c t  f r o n t .  
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Fig. 20 compares the approximation to the 

exact solution for the impact of aluminum on copper 

at 10 km/sec. The approximation is seen to become 

increasingly inaccurate as the pressure decays. 
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. 

The fellowi.ng c o r c l u s i o n s  may be drawn from t h e  

fm-egoing t h e o r e t j c a l  atialysis 

(a) TJsefiil t l ienref-ical  p r e d i c t i o n s  of t he  f low 
s:ibsequent t o  i-rnpact may he made using E cI l Y  
one -d iaens jona l  r o d e l  

(b) The i ips t ream f l o w  is strongly depend.ent on both 
butnper r a t e r i a l  and jmpact v e l o c i t y .  

(c) A po ly t ron ic  gas lew grovic'es a v s e f u l  approx- 
imat ion o f  t h e  expension i s e n t r o p e  and g ives  
q u a l i t a t i v e l y  PoYrect answers even when t h e  
n?ateTi31 does not behave a s  a g9.s ( i , e  , i s  no t  
vapaiirj zed)  

(d) From the c a l c u l a t i o n  of v a r i o u s  i s e n t r o p e s , - i t  
appears  t h a t  f o r  mcst cornon meta l s  (altmixlum, 
conper,  jron) w i l l  not completely vapor i ze  u n t i l  
" -3rt v e l o c j t i e s  approaching 15 km/sec. a?e 
i ea ched 

( e )  The expansion d e n s i t y  p r o f i l e s  depend s t r o n g l y  
on whether the material .  Is vapor i zed  o r  n o t ,  
e s p e c i a l l y  a t  t h e  escaDe f r o n  

( f )  Re f l ec t ions  from t h e  c o n t a c t  f r o n t  are 
important and have t o  be allowed i n  any a n a l y s i s  



76 

5. RECOMMENDATIONS FOR EXPERIMENTAL WORK 

Three basic methods are available for experimental 

determination of the flow properties. 

(a) High speed photographic techniques including 
both single and multiple frames. 

(b) Flash X-ray absorption techniques. 

(c) Piezo-electric crystal pressure transducers. 

All of the above systems can be obtained 

commercially giving sufficient time resolution (0.1 ‘H 

sec) for the impact phenomena to be observed. 

Of the three methods the first two seem most 

applicable to the study of the initial expansion profile. 

Some earlier framing camera shots were reproduced 

in Fig. 1. This technique can be extended to give 8 x 

10 frames/sec. This then enables one to study shock 

position and initial expansion direction although the 

6 

details of the one-dimensional regime are hidden. 

8 

sec. flash duration for as many as four channels. This 

Flash X-ray units can be obtained giving 7 x 10- 

enables one to study density gradients of the system. 

This seems to be the most promising approach and some of 

the work performed by Maiden (Ref, 16) indicates very 

good results. 

Pressure measurements although essential in determin- 

ing momentum flux of long term expansion have less applic- 

ation to the initial expansion. 



APPENDIX A 

THE METHOD OF CHARACTERISTICS FOR ONE-DIMENSIONAL UNSTEADY 
FLOW 

The equations governing one-dimensional unsteady flow 

are readily deduced from the general equations in the 

previous section and are as follows: 

Continuity Equation 

Equation of Motion 

Energy Equation 

-tu- dS 3s = 0 
3t d x  

Equation of State 

)3 = b ( e 4  

A. 1 

A. 2 

A. 3 

A. 4 

The equations ( A . l  - A.4) form a system of quasilinear 
partial-differential equations of the hyperbolic type. An 

exact solution is in general not possible, but it is 

possible to reduce the equations to a total differential form 

by considering t h e  variation of the unknown variables along 

certain directions known as the characteristic directions. 
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In t roducing  t h e  speed of sound, c , as 

A. 5 

we can wri te  for  t he  d i f f e r e n t i a l  d p  

Using t h i s  t o  e l i m i n a t e  de r iva t ' i ves  of 

(A. 1) we have: 

'in equat ion  

A. 6 

Adding and s u b t r a c t i n g  equat ion  ( A . 6 )  from equat ion  

( A . 2 )  gives :  

A. 7 
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These equations become total differential equations 

J 

along the following characteristic directions 

respectively: 

A. 8 

Along these characteristics the rate of change of the 

A. 9 

Note that the first two families of characteristic 

(&and1 ) travel at the velocity of sound with respect 

to the fluid either with the flow ( ), or against it 

( h,). 
left running Mach lines. 

2 

I 

These are known respectively as right running or 

The third family of characteristics ( A,) is 
stationary with respect to the fluid. It is sometimes 

known as the regularity condition and imposes the 

constancy of entropy along a path-line. In cases of 

isentropic flow, the regularity condition is automatically 

satisfied since entropy is constant throughout the flow 
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not only on a path line. In all the further analysis 

in this paper we will limit ourselves to isentropic 

flow. 
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APPENDIX B 

SIMPLE WAVES 

Assuming i s e n t r o p i c  f iow,  t h e  f i r s t  two equa t ions  of 

A . 9  can be i n t e g r a t e d  i n  the  form: 

B. 1 

where r ( A , )  and s (  

c h a r a c t e r i s t i c  d i r e c t i o n s  A, and A ,  r e s p e c t i v e l y .  

known as the Rieman i n v a r i a n t s .  The q u a n t i t y  (p) i s  

given by : 

) a r e  a r b i t r a r y  f u n c t i o n s  of t he  two 
2 

They a r e  - 

B. 2 

I 
where q' and a r e  a r b i t r a r y  c o n s t a n t s .  

A simple wave i s  now de f ined  as a r eg ion  where e i t h e r  

r o r  s i s  cons t an t .  

= c o n s t a n t ,  then t h e  h , c h a r a c t e r i s t i c s  r = c o n s t a n t  are 

s t r a i g h t .  The wave thus  propagates  a t  v e l o c i t y  (u + c )  

and i s  r igh t - runn ing .  I n  a d d i t i o n  p r o p e r t i e s  a long  the 

c h a r a c t e r i s t i c  l i n e s  & , a r e  c o n s t a n t .  

Taking as an  example, t he  case  s ( A r )  

A fundamental p rope r ty  of simple waves i s  t h a t  a r eg ion  

a d j a c e n t  t o  a s t a t e  of cons t an t  p r o p e r t i e s  w i l l  be a 

simple wave. For a more complete d i s c u s s i o n  of both 

simple waves and t h e  method of c h a r a c t e r i s t i c s  s ee  Ref. 9 .  
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Aluminum 
I 

7;- 
n--. 

1 

2 

3 

4 

5 

6 

7 

Copper 

TABLE I 

Polynomial Curve-Fit of Hugoniot Curve of Various Materials: 

1 

2 

3 

4 

5 

Aluninum 

137.0 

543.4 305.4 

194.8 266.8 

-444 4037 

5 19 -11745 

73.1 

152.7 

143.5 

-887 

2862 

-3192 

1183 

Copper 

137.0 

271.7 

224.0 

1078 

-2907 

3674 

-1346 

Lead 

41.4 

101.7 

120.0 

-4 3 

54 7 

-801 

312 

Iron 

30.3 

724.5 

-271.2 

- 14 
85 2 

- - - - -  

- - - - -  

TABLE I1 

Polynomial Curve-Fit of Isentropic Compressibility Behind 
Shock: 

- 106 9650 

i I Lead Iron 
I 

41.4 

203.4 

184.2 

248 

-439 

167 

196.3 

-157.0 

3862.2 

-5448 

3077 

- - - - -  



. 

I .  

Pki t e 1: i a 1 

CH2 

Ph 

W 

cu 

Fe 

A1 

Be 

Ti 

Ni 

Mo 

Th 

a 

0 . 6 
0.4  

u.5 

0.5 

0.5 

0.5 

0.55 

0.5 

0 . 5 
0.5 

0 .4  
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TABLE III 
----I--- 

Equation-of-State Constants (Ref, 12) 

b 

2 * ii 

2.37 

1.U4 

1.5 

1.5 

1.63 

0.62 

0.60 

1.33 

1. (J2 

0.86 

fo 

0.92 

11.34 

19 .17  

8.90 

7.86 

2.70 

1.85 

4.50 

8.86 

LO. 20 

11.68 

EO - 
7.0 

1.5 

22.5 

32.5 

9.5 

5.0 

17.5 

7.0 

9 .0  

4. . 5 

2.5 

A 

7.5 

46.64 

308.0 

139.0 

127.9 

75.2 

117.34 

103.0 

191.2 

271.3 

53.1 

2.0 

15. C 

250. 0 

1.10.0 

105. c 
65 . 0 

55 .0 

50.0 

150.0 

165.0 

50.0 

~~ 

ES 

2.4 

0.26 

1.4 

2.0 

2.5 

3 . 0  

10.0  

3.5 

3 , 0  

3 . 0  

2.0 

- 
4 - 
10 

13 

10 

5 

5 

5 

5 

5 

5 

5 

9 

- 
9 
5 

15 

10 

5 

5 

5 

5 

5 

5 

5 

0.813 


